Proton Driver Error Simulations (Front-End only) 150 set of errors simulated

Jean-Paul Carneiro

February 11, 2010

ALGN2 Parameter TRACKv39 (new parameter)

- n ALGN2 name δ_x δ_y δ_z ϕ_x ϕ_y ϕ_z $\delta\phi_{dyn.}$ $\delta\phi_{static}$ $\delta F_{dyn.}$ δF_{static}
 - ▶ From RFQ exit to end of 325 MHz section (\sim 140 meters)
 - ▶ 120 errors simulated with TRACKv39
 - ► Each error simulated with 400 runs with 3D SC (45 mA)
 - ▶ 120×400=48000 runs with TRACKv39

Parameters 01-20

- ▶ 01/ Solenoids $\delta_x = 150 \ \mu \text{m}$
- ▶ 02/ Solenoids $\delta_x = 300 \ \mu \text{m}$
- ▶ 03/ Solenoids $\delta_x = 500 \ \mu \text{m}$
- ▶ 04/ Solenoids $\delta_{x} = 750 \ \mu \mathrm{m}$
- ▶ 05/ Solenoids $\delta_{x} = 1000 \ \mu \text{m}$
- ▶ 06/ Solenoids $\phi_x = 1$ mrad
- ▶ 07/ Solenoids $\phi_x = 2$ mrad
- ▶ 08/ Solenoids $\phi_X = 5$ mrad
- ▶ 09/ Solenoids $\phi_x = 7$ mrad
- ▶ 10/ Solenoids $\phi_x = 10$ mrad

- ▶ 11/ Quads $\delta_{\mathsf{x}} = 150~\mu\mathrm{m}$
- ▶ 12/ Quads $\delta_{x} = 300 \ \mu \text{m}$
- ▶ 13/ Quads $\delta_{x} = 500 \ \mu \text{m}$
- ▶ 14/ Quads $\delta_{x} = 750 \ \mu \text{m}$
- ▶ 15/ Quads $\delta_{\rm x} = 1000~\mu{\rm m}$
- ▶ 16/ Quads $\phi_z = 1$ mrad
- ▶ 17/ Quads $\phi_z = 2$ mrad
- ▶ 18/ Quads $\phi_z = 5$ mrad
- ▶ 19/ Quads $\phi_z = 7$ mrad
- ightharpoonup 20/ Quads $\phi_z = 10$ mrad

Parameters 21-40

- ▶ 21/ Cav. Phase $\delta \phi_{dynamic} = 0.5^{\circ}$
- ▶ 22/ Cav. Phase $\delta \phi_{dynamic} = 1.0^{\circ}$
- ▶ 23/ Cav. Phase $\delta \phi_{dynamic} = 1.5^{\circ}$
- ▶ 24/ Cav. Phase $\delta \phi_{dynamic} = 2.0^{\circ}$
- \blacktriangleright 25/ Cav. Phase $\delta\phi_{dynamic}=2.5^\circ$
- ▶ 26/ Cav. Phase $\delta \phi_{static} = 0.5^{\circ}$
- ▶ 27/ Cav. Phase $\delta \phi_{static} = 1.0^{\circ}$
- ▶ 28/ Cav. Phase $\delta \phi_{static} = 1.5^{\circ}$
- ▶ 29/ Cav. Phase $\delta \phi_{static} = 2.0^{\circ}$
- ▶ 30/ Cav. Phase $\delta \phi_{static} = 2.5^{\circ}$

- ▶ 31/ Cav. Field $\delta F_{dynamic} = 0.5 \%$
- ▶ 32/ Cav. Field $\delta F_{dynamic} = 1.0 \%$
- ▶ 33/ Cav. Field $\delta F_{dynamic} = 1.5 \%$
- ▶ 34/ Cav. Field $\delta F_{dynamic} = 2.0 \%$
- ▶ 35/ Cav. Field $\delta F_{dynamic} = 2.5 \%$
- ▶ 36/ Cav. Field $\delta F_{static} = 0.5 \%$
- ▶ 37/ Cav. Field $\delta F_{static} = 1.0 \%$
- ▶ 38/ Cav. Field $\delta F_{static} = 1.5 \%$
- ▶ 39/ Cav. Field $\delta F_{static} = 2.0 \%$
- ▶ 40/ Cav. Field $\delta F_{static} = 2.5 \%$

Parameters 41-60

- ightharpoonup 41/ Cav. $\delta_{
 m x}=$ 150 $\mu{
 m m}$
- ightharpoonup 42/ Cav. $\delta_{
 m x}=$ 300 $\mu{\rm m}$
- ▶ 43/ Cav. $\delta_x = 500 \ \mu \text{m}$
- ▶ 44/ Cav. $\delta_{x} = 750 \ \mu \text{m}$
- ightharpoonup 45/ Cav. $\delta_{
 m x}=1000~\mu{\rm m}$
- ▶ 46/ Cav. $\delta_x = \delta_y = 150 \ \mu \text{m}$
- ▶ 47/ Cav. $\delta_x = \delta_v = 300 \ \mu \text{m}$
- ▶ 48/ Cav. $\delta_x = \delta_y = 500 \ \mu \text{m}$
- ▶ 49/ Cav. $\delta_x = \delta_y = 750 \ \mu \text{m}$
- ▶ 50/ Cav. $\delta_x = \delta_y = 1000 \ \mu \text{m}$

- ▶ 51/ Cav. $\delta_z = 150 \ \mu \text{m}$
- ▶ 52/ Cav. $\delta_z = 300~\mu\mathrm{m}$
- ▶ 53/ Cav. $\delta_z = 500 \ \mu \mathrm{m}$
- ▶ 54/ Cav. $\delta_z = 750~\mu\mathrm{m}$
- ▶ 55/ Cav. $\delta_z = 1000 \ \mu \text{m}$
- ▶ 56/ Cav. $\phi_{\mathsf{x}} = 1$ mrad
- ▶ 57/ Cav. $\phi_x = 2$ mrad
- ▶ 58/ Cav. $\phi_x = 5$ mrad
- ▶ 59/ Cav. $\phi_x = 7$ mrad
- ▶ 60/ Cav. $\phi_{\mathsf{x}} = 10 \; \mathsf{mrad}$

Parameters 61-80

- ▶ 61/ Cav. $\phi_x = \phi_v = 1$ mrad
- ▶ 62/ Cav. $\phi_x = \phi_y = 2$ mrad
- ▶ 63/ Cav. $\phi_x = \phi_y = 5$ mrad
- ▶ 64/ Cav. $\phi_x = \phi_y = 7$ mrad
- ▶ 65/ Cav. $\phi_x = \phi_y = 10$ mrad
- ▶ 66/ Cav. $\phi_z = 1$ mrad
- ▶ 67/ Cav. $\phi_z = 2$ mrad
- ▶ 68/ Cav. $\phi_z = 5$ mrad
- ▶ 69/ Cav. $\phi_z = 7$ mrad
- ightharpoonup 70/ Cav. $\phi_z = 10$ mrad

- ▶ 71/ Sol. $\delta_x = \delta_y = 150 \ \mu \text{m}$
- ▶ 72/ Sol. $\delta_x = \delta_y = 300 \ \mu \text{m}$
- ▶ 73/ Sol. $\delta_x = \delta_y = 500 \ \mu \text{m}$
- ▶ 74/ Sol. $\delta_x = \delta_y = 750 \ \mu \text{m}$
- ▶ 75/ Sol. $\delta_x = \delta_y = 1000 \ \mu \text{m}$
- ightharpoonup 76/ Sol. $\delta_z=150~\mu\mathrm{m}$
- ▶ 77/ Sol. $\delta_z = 300 \; \mu \text{m}$
- ▶ 78/ Sol. $\delta_z = 500 \ \mu \text{m}$
- ▶ 79/ Sol. $\delta_z = 750 \ \mu \text{m}$
- ▶ 80/ Sol. $\delta_z = 1000 \ \mu \text{m}$

Parameters 81-100

- ▶ 81/ Sol. $\phi_x = \phi_y = 1$ mrad
- ▶ 82/ Sol. $\phi_x = \phi_y = 2$ mrad
- ▶ 83/ Sol. $\phi_x = \phi_y = 5$ mrad
- ▶ 84/ Sol. $\phi_x = \phi_y = 7$ mrad
- ▶ 85/ Sol. $\phi_x = \phi_y = 10$ mrad
- ▶ 86/ Sol. Field $\delta F_{dynamic} = 0.5 \%$
- ▶ 87/ Sol. Field $\delta F_{dynamic} = 1.0 \%$
- ▶ 88/ Sol. Field $\delta F_{dynamic} = 1.5 \%$
- ▶ 89/ Sol. Field $\delta F_{dynamic} = 2.0 \%$
- ▶ 90/ Sol. Field $\delta F_{dynamic} = 2.5 \%$

- ▶ 91/ Sol. Field $\delta F_{static} = 0.5 \%$
- ▶ 92/ Sol. Field $\delta F_{static} = 1.0 \%$
- ▶ 93/ Sol. Field $\delta F_{static} = 1.5 \%$
- ▶ 94/ Sol. Field $\delta F_{static} = 2.0 \%$
- ▶ 95/ Sol. Field $\delta F_{static} = 2.5 \%$
- ▶ 96/ Quads $\delta_x = \delta_y = 150 \ \mu \text{m}$
- ▶ 97/ Quads $\delta_x = \delta_y = 300 \ \mu \text{m}$
- ▶ 98/ Quad $\delta_x = \delta_y = 500 \ \mu \text{m}$
- ▶ 99/ Quads $\delta_x = \delta_y = 750 \ \mu \text{m}$
- ▶ 100/ Quads $\delta_{\mathsf{x}} = \delta_{\mathsf{y}} = 1000~\mu\mathrm{m}$

Parameters 101-120

- ▶ 101/ Quads $\delta_z = 150 \ \mu \text{m}$
- ▶ 102/ Quads $\delta_z = 300 \ \mu \mathrm{m}$
- ▶ 103/ Quads $\delta_z = 500 \ \mu \text{m}$
- ▶ 104/ Quads $\delta_z = 750 \ \mu \text{m}$
- ightharpoonup 105/ Quads $\delta_z=1000~\mu{\rm m}$
- ▶ 106/ Quads $\phi_x = 1$ mrad
- ▶ 107/ Quads $\phi_x = 2$ mrad
- ▶ 108/ Quads $\phi_x = 5$ mrad
- ▶ 109/ Quads $\phi_x = 7$ mrad
- ▶ 110/ Quads $\phi_{\mathsf{x}} = 10 \; \mathsf{mrad}$

- ▶ 111/ Quads $\phi_x = \phi_y = 1$ mrad
- ▶ 112/ Quads $\phi_x = \phi_y = 2$ mrad
- ▶ 113/ Quads $\phi_x = \phi_y = 3$ mrad
- ▶ 114/ Quads $\phi_x = \phi_y = 7$ mrad
- ▶ 115/ Quads $\phi_{x} = \phi_{y} = 10$ mrad
- ▶ 116/ Quads Field $\delta F_{dynamic} = 0.5 \%$
- lacksquare 117/ Quads Field $\delta F_{dynamic}=1.0~\%$
- ▶ 118/ Quads Field $\delta F_{dynamic} = 1.5 \%$
- ▶ 119/ Quads Field $\delta F_{dynamic} = 2.0 \%$
- ▶ 120/ Quads Field $\delta F_{dynamic} = 2.5 \%$

ALGN Parameter TRACKv39 (121 and above

- n ALGN name δ_{xy} δ_z ϕ_z $\delta\phi_{dyn.}$ $\delta\phi_{static}$ $\delta F_{dyn.}$ δF_{static}
 - ► From RFQ exit to end of 325 MHz section (~140 meters)
 - ▶ 120 errors simulated with TRACKv39
 - ► Each error simulated with 400 runs with 3D SC (45 mA)
 - ▶ 120×400=48000 runs with TRACKv39

Parameters 121-140

- ▶ 121/ Quads Field $\delta F_{static} = 0.5 \%$
- ▶ 122/ Quads Field $\delta F_{static} = 1.0 \%$
- ▶ 123/ Quads Field $\delta F_{static} = 1.5 \%$
- ▶ 124/ Quads Field $\delta F_{static} = 2.0 \%$
- ▶ 125/ Quads Field $\delta \textit{F}_{\textit{static}} = 2.5 \%$
- ▶ 126/ Sol. $\delta_{xy} = 150 \ \mu \text{m}$
- ightharpoonup 127/ Sol. $\delta_{xy}=300~\mu\mathrm{m}$
- ▶ 128/ Sol. $\delta_{xy} = 500 \ \mu \text{m}$
- ightharpoonup 129/ Sol. $\delta_{xy}=750~\mu\mathrm{m}$
- ▶ 130/ Sol. $\delta_{xy} = 1000 \ \mu \text{m}$

- ightharpoonup 131/ Quads $\delta_{\it xy}=$ 150 $\mu{\rm m}$
- ightharpoonup 132/ Quads $\delta_{\mathit{xy}} =$ 300 $\mu\mathrm{m}$
- ▶ 133/ Quads $\delta_{xy} = 500 \ \mu \text{m}$
- ightharpoonup 134/ Quads $\delta_{xy}=750~\mu\mathrm{m}$
- ightharpoonup 135/ Quads $\delta_{
 m xy}=$ 1000 $\mu{
 m m}$
- ▶ 136/ Cavity $\delta_{xy} = 150 \ \mu \text{m}$
- ▶ 137/ Cavity $\delta_{xy} = 300 \ \mu \text{m}$
- ▶ 138/ Cavity $\delta_{xy} = 500 \ \mu \text{m}$
- ▶ 139/ Cavity $\delta_{xy} = 750 \ \mu \text{m}$
- ightharpoonup 140/ Cavity $\delta_{\mathit{xy}} = 1000~\mu\mathrm{m}$

Parameters 141-150

- ▶ 141/ Cav. Phase + Cav. Field $\delta \phi_{dyn.} = 1^{\circ} \delta F_{dyn.} = 1\%$
- ▶ 142/ 141+ Sol. Field $\delta F_{dyn.} = 0.5 \% \delta F_{static} = 0.5 \%$
- ightharpoonup 143/ 142 + Quads Fields $\delta F_{dyn.}=0.5~\%~\delta F_{static}=0.05~\%$
- ▶ 144/ 143 + Cav. $\delta_{xy} = 500 \ \mu \text{m}$
- ▶ 145/ 144 + Cav. $\phi_z = 2 \text{ mrad}$
- ▶ 146/ 145 + Sol. $\delta_{xy} = 150 \ \mu \text{m}$
- ▶ 147/ 146 + Sol. $\delta_{xy} = 300 \ \mu \text{m}$
- ▶ 148/ 147 + Sol. $\delta_{xy} = 500 \ \mu \text{m}$
- ▶ 149/ 148 + Sol. $\delta_{xy} = 750 \ \mu \text{m}$
- ▶ 150/ 149 + Sol. $\delta_{xy} = 1000 \ \mu \text{m}$

(01) Solenoids $\delta_{\rm x}=$ 150 $\mu{\rm m}$

Figure: RMS Emittance X

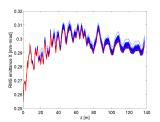


Figure: RMS Emittance Z

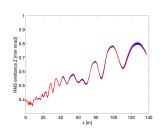


Figure: RMS Emittance Y

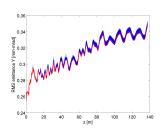
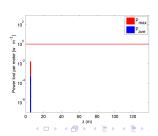



Figure: Losses [W⋅m⁻¹]

(02) Solenoids $\delta_x = 300 \ \mu \text{m}$

Figure: RMS Emittance X

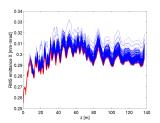


Figure: RMS Emittance Z

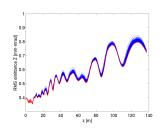


Figure: RMS Emittance Y

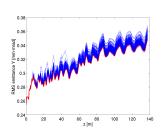
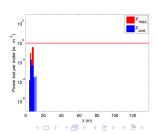



Figure: Losses [W⋅m⁻¹]

(03) Solenoids $\delta_{\rm x}=$ 500 $\mu{\rm m}$

Figure: RMS Emittance X

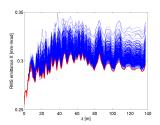


Figure: RMS Emittance Z

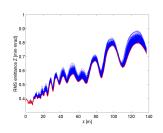


Figure: RMS Emittance Y

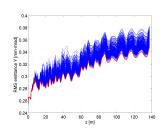
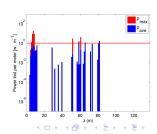



Figure: Losses [W⋅m⁻¹]

(04) Solenoids $\delta_{x}=750~\mu\mathrm{m}$

Figure: RMS Emittance X

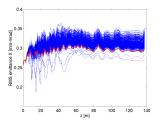


Figure: RMS Emittance Z



Figure: RMS Emittance Y

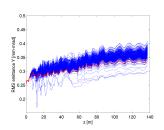
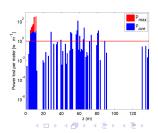



Figure: Losses [W⋅m⁻¹]

(05) Solenoids $\delta_{\scriptscriptstyle X}=$ 1000 $\mu{\rm m}$

Figure: RMS Emittance X

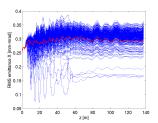


Figure: RMS Emittance Z

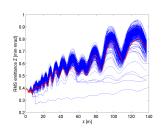


Figure: RMS Emittance Y

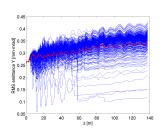
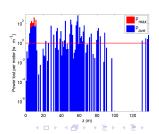



Figure: Losses [W⋅m⁻¹]

(06) Solenoids $\phi_{\mathsf{x}}=1$ mrad

Figure: RMS Emittance X

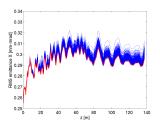


Figure: RMS Emittance Z

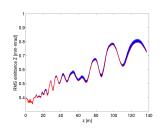


Figure: RMS Emittance Y

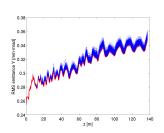
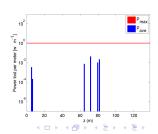



Figure: Losses [W⋅m⁻¹]

(07) Solenoids $\phi_{\mathsf{x}} = 2 \; \mathsf{mrad}$

Figure: RMS Emittance X

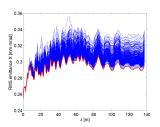


Figure: RMS Emittance z

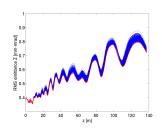


Figure: RMS Emittance Y

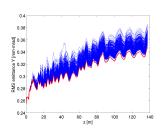
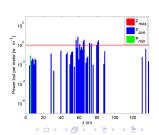



Figure: Losses [W⋅m⁻¹]

(08) Solenoids $\phi_{\rm x}=5$ mrad

Figure: RMS Emittance X

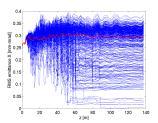


Figure: RMS Emittance Z

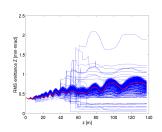


Figure: RMS Emittance Y

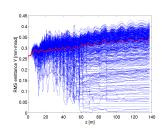
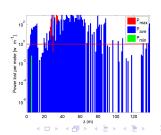



Figure: Losses [W⋅m⁻¹]

(09) Solenoids $\phi_{\mathsf{x}} = \mathsf{7} \; \mathsf{mrad}$

Figure: RMS Emittance X

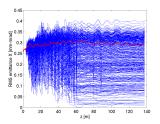


Figure: RMS Emittance Z

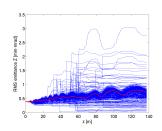


Figure: RMS Emittance Y

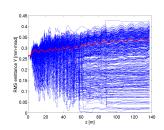
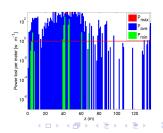



Figure: Losses [W⋅m⁻¹]

(10) Solenoids $\phi_{\mathsf{x}} = 10 \; \mathsf{mrad}$

Figure: RMS Emittance X

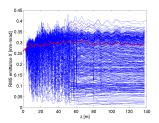


Figure: RMS Emittance Z

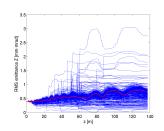


Figure: RMS Emittance Y

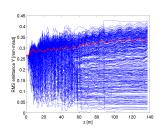
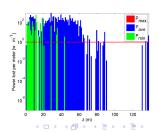



Figure: Losses [W⋅m⁻¹]

(11) Quads $\delta_x = 150 \ \mu \text{m}$

Figure: RMS Emittance X

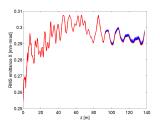


Figure: RMS Emittance Z

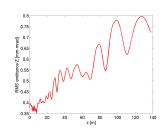


Figure: RMS Emittance Y

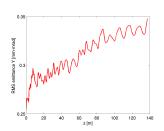
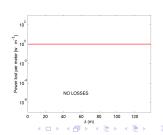



Figure: Losses [W⋅m⁻¹]

(12) Quads $\delta_x = 300 \ \mu \text{m}$

Figure: RMS Emittance X

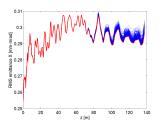


Figure: RMS Emittance Z

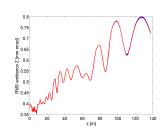


Figure: RMS Emittance Y

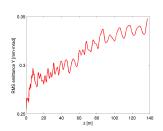
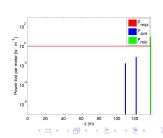



Figure: Losses [W⋅m⁻¹]

(13) Quads $\delta_x = 500 \ \mu \mathrm{m}$

Figure: RMS Emittance X

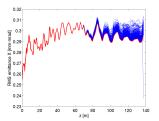


Figure: RMS Emittance Z

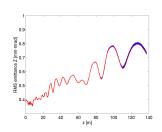


Figure: RMS Emittance Y

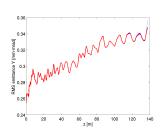
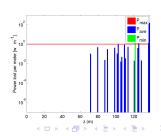



Figure: Losses [W⋅m⁻¹]

(14) Quads $\delta_{x}=750~\mu\mathrm{m}$

Figure: RMS Emittance X

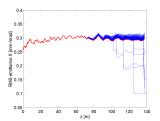


Figure: RMS Emittance Z

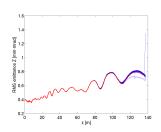


Figure: RMS Emittance Y

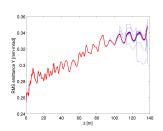
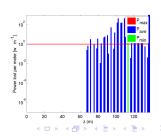



Figure: Losses [W⋅m⁻¹]

(15) Quads $\delta_{\scriptscriptstyle X} = 1000~\mu{\rm m}$

Figure: RMS Emittance X

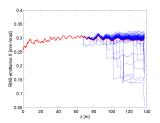


Figure: RMS Emittance Z

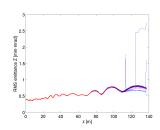


Figure: RMS Emittance Y

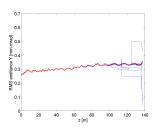
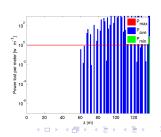



Figure: Losses [W⋅m⁻¹]

(16) Quads $\phi_z = 1$ mrad

Figure: RMS Emittance X

Figure: RMS Emittance Z

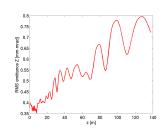


Figure: RMS Emittance Y

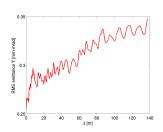


Figure: Losses [W⋅m⁻¹]

(17) Quads $\phi_z = 2$ mrad

Figure: RMS Emittance X

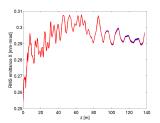


Figure: RMS Emittance Z

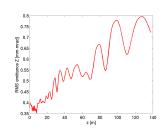


Figure: RMS Emittance Y

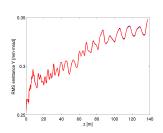


Figure: Losses [W⋅m⁻¹]

(18) Quads $\phi_z = 5$ mrad

Figure: RMS Emittance X

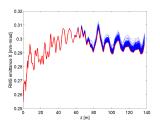


Figure: RMS Emittance Z

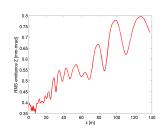


Figure: RMS Emittance Y

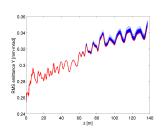


Figure: Losses [W⋅m⁻¹]

(19) Quads $\phi_z = 7$ mrad

Figure: RMS Emittance X

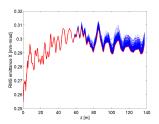


Figure: RMS Emittance Z

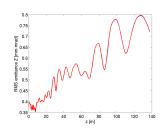


Figure: RMS Emittance Y

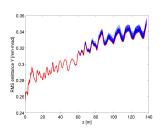
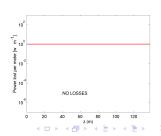



Figure: Losses [W⋅m⁻¹]

(20) Quads $\phi_z = 10 \text{ mrad}$

Figure: RMS Emittance X

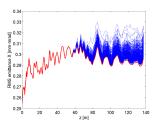


Figure: RMS Emittance Z

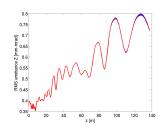


Figure: RMS Emittance Y

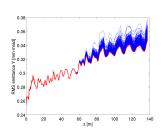


Figure: Losses [W⋅m⁻¹]

(21) Cavities Phase $\delta\phi_{\textit{dynamic}} = 0.5 \text{ deg}$

Figure: RMS Emittance X

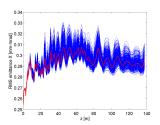


Figure: RMS Emittance Z

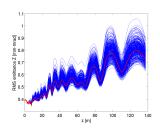


Figure: RMS Emittance Y

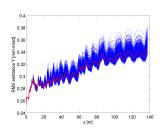
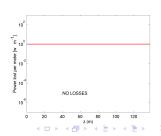



Figure: Losses [W⋅m⁻¹]

(22) Cavities Phase $\delta\phi_{\textit{dynamic}} = 1.0 \text{ deg}$

Figure: RMS Emittance X

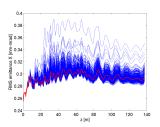


Figure: RMS Emittance Z

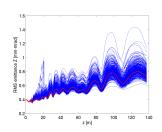


Figure: RMS Emittance Y

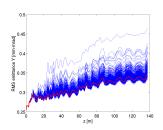
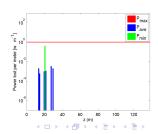



Figure: Losses [W⋅m⁻¹]

(23) Cavities Phase $\delta\phi_{\textit{dynamic}} = 1.5 \text{ deg}$

Figure: RMS Emittance X

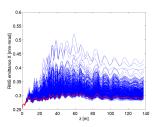


Figure: RMS Emittance Z

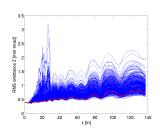


Figure: RMS Emittance Y

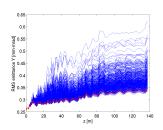
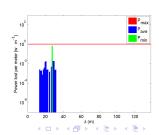



Figure: Losses [W⋅m⁻¹]

(24) Cavities Phase $\delta\phi_{dynamic}=$ 2.0 deg

Figure: RMS Emittance X

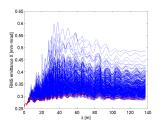


Figure: RMS Emittance Z

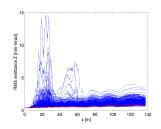


Figure: RMS Emittance Y

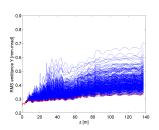
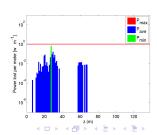



Figure: Losses [W⋅m⁻¹]

(25) Cavities Phase $\delta\phi_{\textit{dynamic}} = 2.5 \text{ deg}$

Figure: RMS Emittance X

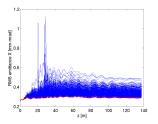


Figure: RMS Emittance Z

Figure: RMS Emittance Y

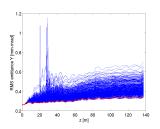
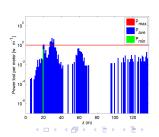



Figure: Losses [W⋅m⁻¹]

(26) Cavities Phase $\delta\phi_{static}=$ 0.5 deg

Figure: RMS Emittance X

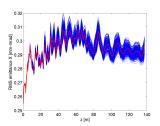


Figure: RMS Emittance Z

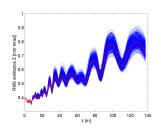


Figure: RMS Emittance Y

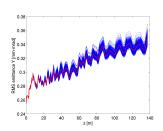
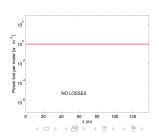



Figure: Losses [W⋅m⁻¹]

(27) Cavities Phase $\delta\phi_{static}=1.0$ deg

Figure: RMS Emittance X

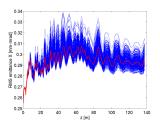


Figure: RMS Emittance z

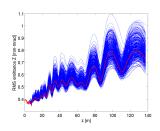


Figure: RMS Emittance Y

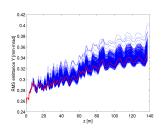
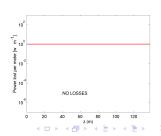



Figure: Losses [W⋅m⁻¹]

(28) Cavities Phase $\delta\phi_{static}=1.5$ deg

Figure: RMS Emittance X

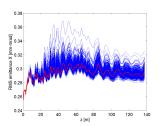


Figure: RMS Emittance Z

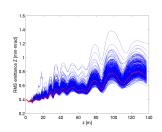


Figure: RMS Emittance Y

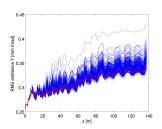



Figure: Losses [W⋅m⁻¹]

(29) Cavities Phase $\delta \phi_{static} = 2.0$ deg

Figure: RMS Emittance X

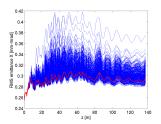


Figure: RMS Emittance Z

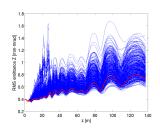


Figure: RMS Emittance Y

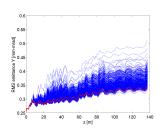
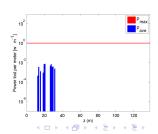



Figure: Losses [W⋅m⁻¹]

(30) Cavities Phase $\delta \phi_{static} = 2.5 \text{ deg}$

Figure: RMS Emittance X

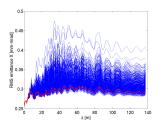


Figure: RMS Emittance Z

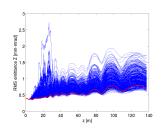


Figure: RMS Emittance Y

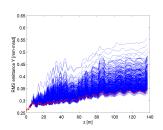
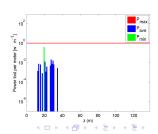



Figure: Losses [W⋅m⁻¹]

(31) Cavities Field $\delta F_{dynamic} = 0.5 \%$

Figure: RMS Emittance X

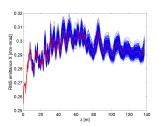


Figure: RMS Emittance Z

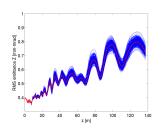


Figure: RMS Emittance Y

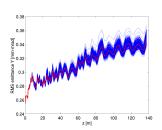
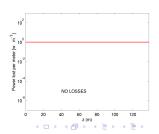



Figure: Losses [W⋅m⁻¹]

(32) Cavities Field $\delta F_{dynamic} = 1.0 \%$

Figure: RMS Emittance X

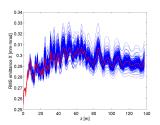


Figure: RMS Emittance Z

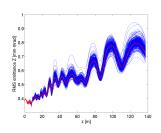


Figure: RMS Emittance Y

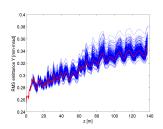
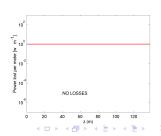



Figure: Losses [W⋅m⁻¹]

(33) Cavities Field $\delta F_{dynamic} = 1.5 \%$

Figure: RMS Emittance X

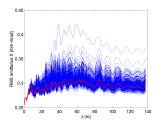


Figure: RMS Emittance Z

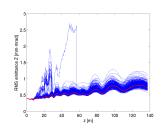


Figure: RMS Emittance Y

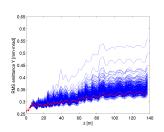
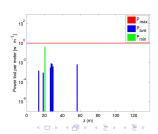



Figure: Losses [W⋅m⁻¹]

(34) Cavities Field $\delta F_{dynamic} = 2.0 \%$

Figure: RMS Emittance X

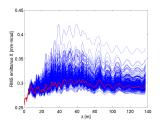


Figure: RMS Emittance Z

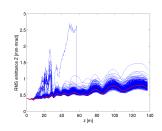


Figure: RMS Emittance Y

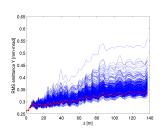
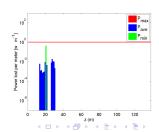



Figure: Losses [W⋅m⁻¹]

(35) Cavities Field $\delta F_{dynamic} = 2.5 \%$

Figure: RMS Emittance X

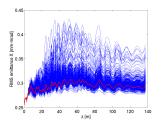


Figure: RMS Emittance Z

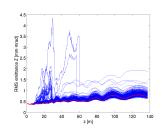


Figure: RMS Emittance Y

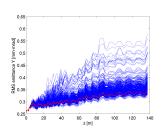
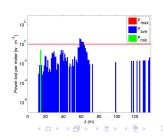



Figure: Losses [W⋅m⁻¹]

(36) Cavities Field $\delta F_{static} = 0.5 \%$

Figure: RMS Emittance X

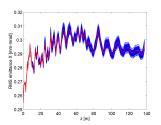


Figure: RMS Emittance Z

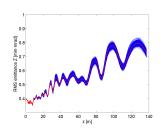


Figure: RMS Emittance Y

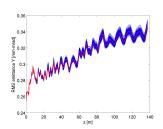
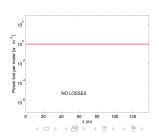



Figure: Losses [W⋅m⁻¹]

(37) Cavities Field $\delta F_{static} = 1.0 \%$

Figure: RMS Emittance X

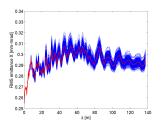


Figure: RMS Emittance Z

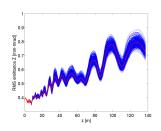


Figure: RMS Emittance Y

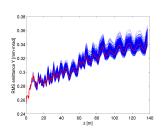


Figure: Losses [W⋅m⁻¹]

(38) Cavities Field $\delta F_{static} = 1.5 \%$

Figure: RMS Emittance X

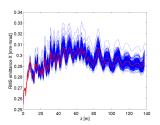


Figure: RMS Emittance Z

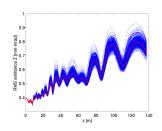


Figure: RMS Emittance Y

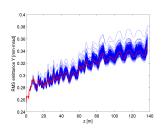
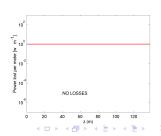



Figure: Losses [W⋅m⁻¹]

(39) Cavities Field $\delta F_{static} = 2.0 \%$

Figure: RMS Emittance X

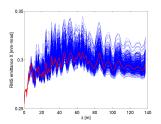


Figure: RMS Emittance Z

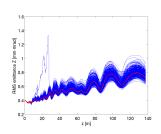


Figure: RMS Emittance Y

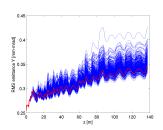


Figure: Losses [W⋅m⁻¹]

(40) Cavities Field $\delta F_{static} = 2.5 \%$

Figure: RMS Emittance X

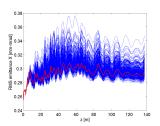


Figure: RMS Emittance Z

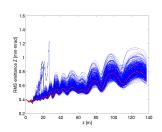


Figure: RMS Emittance Y

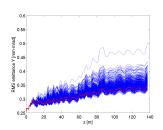
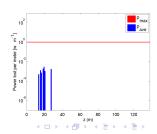



Figure: Losses [W⋅m⁻¹]

(41) Cavities $\delta_{x}=150~\mu\mathrm{m}$

Figure: RMS Emittance X

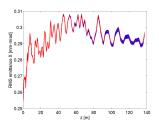


Figure: RMS Emittance Z

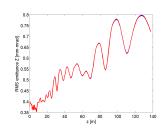


Figure: RMS Emittance Y

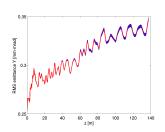
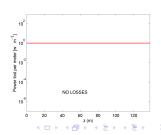



Figure: Losses [W⋅m⁻¹]

(42) Cavities $\delta_x = 300 \ \mu \text{m}$

Figure: RMS Emittance X

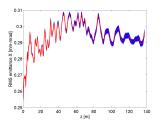


Figure: RMS Emittance Z

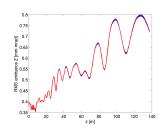


Figure: RMS Emittance Y

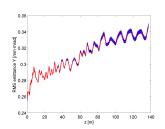


Figure: Losses [W⋅m⁻¹]

(43) Cavities $\delta_x = 500 \ \mu \text{m}$

Figure: RMS Emittance X

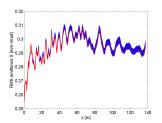


Figure: RMS Emittance Z

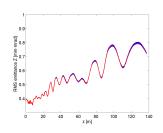


Figure: RMS Emittance Y

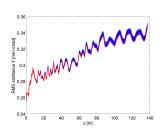
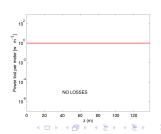



Figure: Losses [W⋅m⁻¹]

(44) Cavities $\delta_{x} = 750 \ \mu \mathrm{m}$

Figure: RMS Emittance X

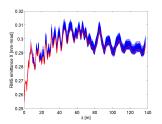


Figure: RMS Emittance Z

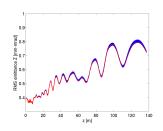


Figure: RMS Emittance Y

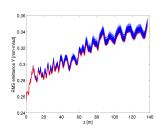
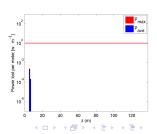



Figure: Losses [W⋅m⁻¹]

(45) Cavities $\delta_{\times} = 1000 \ \mu \text{m}$

Figure: RMS Emittance X

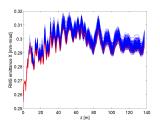


Figure: RMS Emittance Z

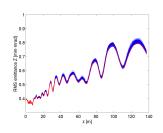


Figure: RMS Emittance Y

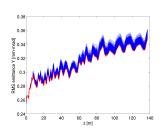
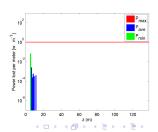



Figure: Losses [W⋅m⁻¹]

(46) Cavities $\delta_x = \delta_y = 150 \ \mu \text{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

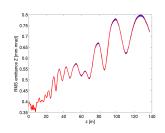


Figure: RMS Emittance Y

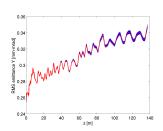
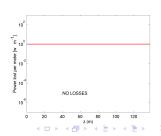



Figure: Losses [W⋅m⁻¹]

(47) Cavities $\delta_x = \delta_y = 300 \ \mu \text{m}$

Figure: RMS Emittance X

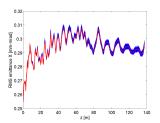


Figure: RMS Emittance z

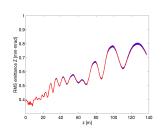


Figure: RMS Emittance Y

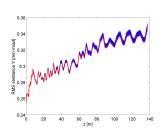
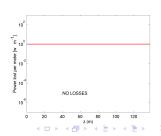



Figure: Losses [W⋅m⁻¹]

(48) Cavities
$$\delta_x = \delta_y = 500 \ \mu \text{m}$$

Figure: RMS Emittance X

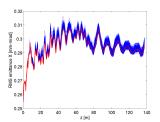


Figure: RMS Emittance Z

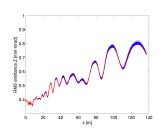


Figure: RMS Emittance Y

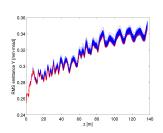
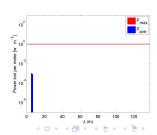



Figure: Losses [W⋅m⁻¹]

(49) Cavities
$$\delta_x = \delta_y = 750 \ \mu \text{m}$$

Figure: RMS Emittance X

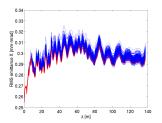


Figure: RMS Emittance Z

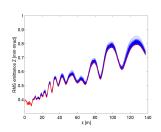
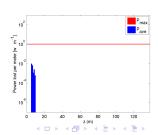



Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(50) Cavities $\delta_{x} = \delta_{y} = 1000 \ \mu \text{m}$

Figure: RMS Emittance X

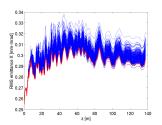


Figure: RMS Emittance Z

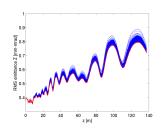


Figure: RMS Emittance Y

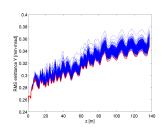
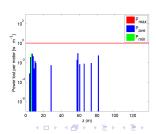



Figure: Losses [W⋅m⁻¹]

(51) Cavities $\delta_z = 150 \ \mu \text{m}$

Figure: RMS Emittance X

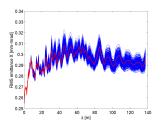


Figure: RMS Emittance Z

Figure: RMS Emittance Y

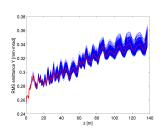


Figure: Losses [W⋅m⁻¹]

(52) Cavities $\delta_z = 300 \ \mu \text{m}$

Figure: RMS Emittance X

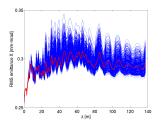


Figure: RMS Emittance Z

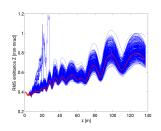


Figure: RMS Emittance Y

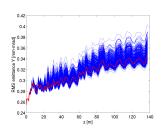
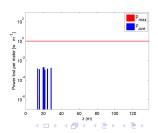



Figure: Losses [W⋅m⁻¹]

(53) Cavities $\delta_z = 500 \ \mu \text{m}$

Figure: RMS Emittance X

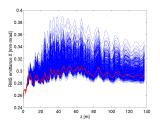


Figure: RMS Emittance Z

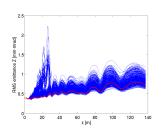


Figure: RMS Emittance Y

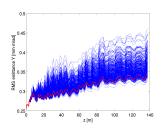
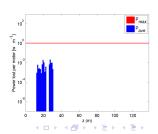



Figure: Losses [W⋅m⁻¹]

(54) Cavities $\delta_z = 750 \ \mu \text{m}$

Figure: RMS Emittance X

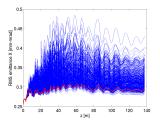


Figure: RMS Emittance Z

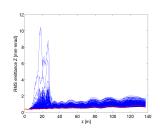


Figure: RMS Emittance Y

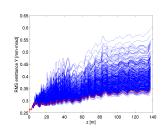
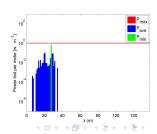



Figure: Losses [W⋅m⁻¹]

(55) Cavities $\delta_z = 1000 \ \mu \text{m}$

Figure: RMS Emittance X

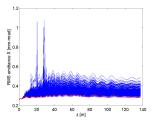


Figure: RMS Emittance Z

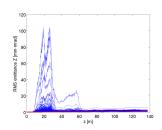


Figure: RMS Emittance Y

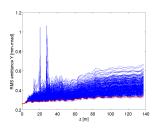
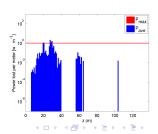



Figure: Losses [W⋅m⁻¹]

(56) Cavities $\phi_x = 1$ mrad

Figure: RMS Emittance X

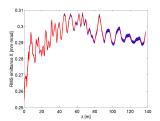


Figure: RMS Emittance Z

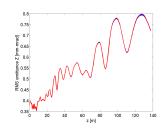


Figure: RMS Emittance Y

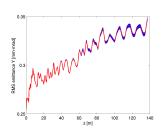
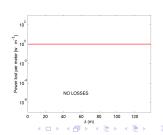



Figure: Losses [W⋅m⁻¹]

(57) Cavities $\phi_x = 2 \text{ mrad}$

Figure: RMS Emittance X

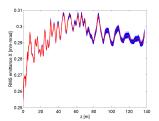


Figure: RMS Emittance Z

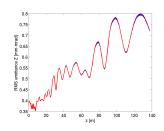


Figure: RMS Emittance Y

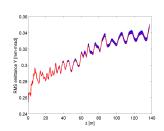


Figure: Losses [W⋅m⁻¹]

(58) Cavities $\phi_x = 5$ mrad

Figure: RMS Emittance X

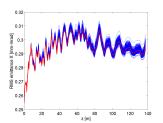


Figure: RMS Emittance Z

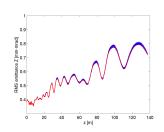


Figure: RMS Emittance Y

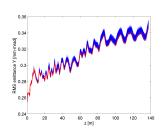
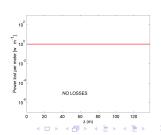



Figure: Losses [W⋅m⁻¹]

(59) Cavities $\phi_x = 7 \text{ mrad}$

Figure: RMS Emittance X

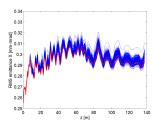


Figure: RMS Emittance Z

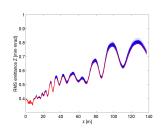


Figure: RMS Emittance Y

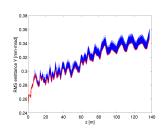
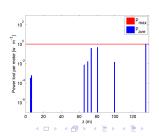



Figure: Losses [W⋅m⁻¹]

(60) Cavities $\phi_x = 10 \text{ mrad}$

Figure: RMS Emittance X

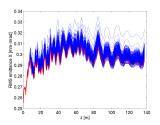


Figure: RMS Emittance Z

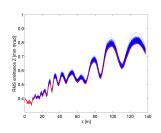


Figure: RMS Emittance Y

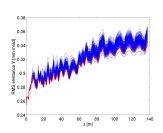
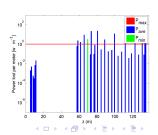



Figure: Losses [W⋅m⁻¹]

(61) Cavities $\phi_x = \phi_y = 1$ mrad

Figure: RMS Emittance X

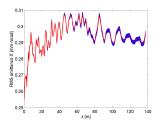


Figure: RMS Emittance Z

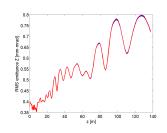


Figure: RMS Emittance Y

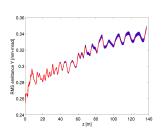
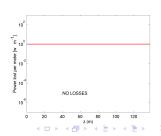



Figure: Losses [W⋅m⁻¹]

(62) Cavities $\phi_x = \phi_y = 2$ mrad

Figure: RMS Emittance X

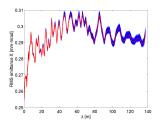


Figure: RMS Emittance Z

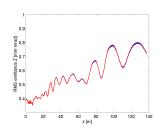


Figure: RMS Emittance Y

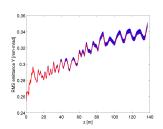
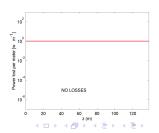



Figure: Losses [W⋅m⁻¹]

(63) Cavities $\phi_x = \phi_y = 5$ mrad

Figure: RMS Emittance X

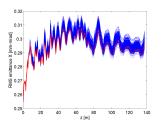


Figure: RMS Emittance Z

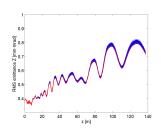


Figure: RMS Emittance Y

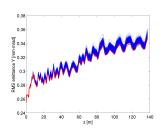
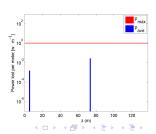



Figure: Losses [W⋅m⁻¹]

(64) Cavities $\phi_{x} = \phi_{y} = 7$ mrad

Figure: RMS Emittance X

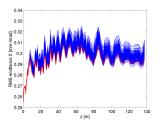


Figure: RMS Emittance Z

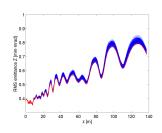


Figure: RMS Emittance Y

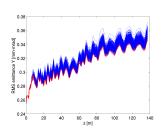
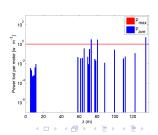



Figure: Losses [W⋅m⁻¹]

(65) Cavities $\phi_{\scriptscriptstyle X}=\phi_{\scriptscriptstyle Y}=$ 10 mrad

Figure: RMS Emittance X

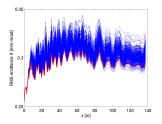


Figure: RMS Emittance Z

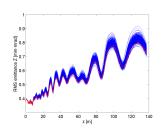


Figure: RMS Emittance Y

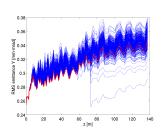
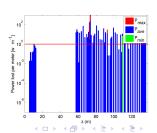



Figure: Losses [W⋅m⁻¹]

(66) Cavities $\phi_z = 1$ mrad

Figure: RMS Emittance X

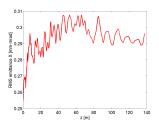


Figure: RMS Emittance Z

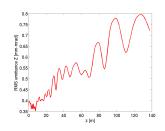


Figure: RMS Emittance Y

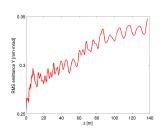


Figure: Losses [W⋅m⁻¹]

(67) Cavities $\phi_z = 2 \text{ mrad}$

Figure: RMS Emittance X

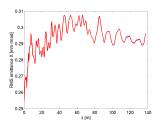


Figure: RMS Emittance z

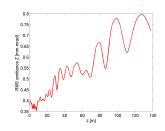


Figure: RMS Emittance Y

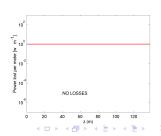



Figure: Losses [W⋅m⁻¹]

(68) Cavities $\phi_z = 5$ mrad

Figure: RMS Emittance X

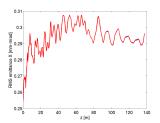


Figure: RMS Emittance Z

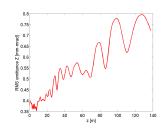


Figure: RMS Emittance Y

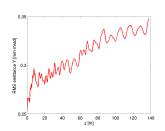
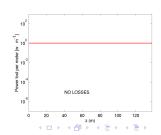



Figure: Losses [W⋅m⁻¹]

(69) Cavities $\phi_z = 7$ mrad

Figure: RMS Emittance X

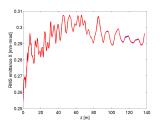


Figure: RMS Emittance Z

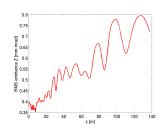


Figure: RMS Emittance Y

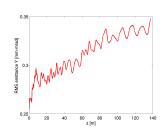


Figure: Losses [W⋅m⁻¹]

(70) Cavities $\phi_z = 10 \text{ mrad}$

Figure: RMS Emittance X

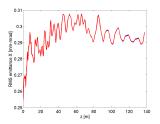


Figure: RMS Emittance Z

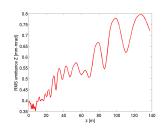


Figure: RMS Emittance Y

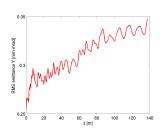
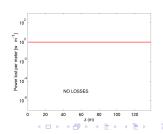



Figure: Losses [W⋅m⁻¹]

(71) Solenoids $\delta_{\rm x}=\delta_{\rm y}=$ 150 $\mu{\rm m}$

Figure: RMS Emittance X

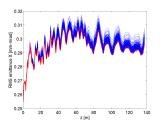


Figure: RMS Emittance Z

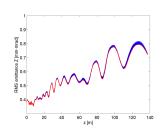


Figure: RMS Emittance Y

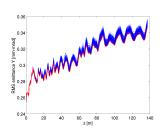
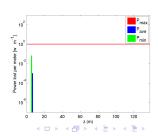



Figure: Losses [W⋅m⁻¹]

(72) Solenoids $\delta_x = \delta_y = 300 \ \mu \text{m}$

Figure: RMS Emittance X

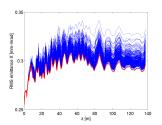


Figure: RMS Emittance Z

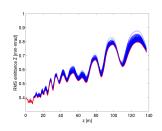


Figure: RMS Emittance Y

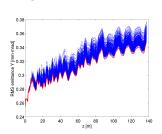
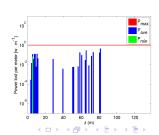



Figure: Losses [W⋅m⁻¹]

(73) Solenoids $\delta_x = \delta_y = 500 \ \mu \text{m}$

Figure: RMS Emittance X

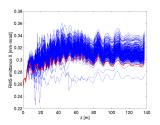


Figure: RMS Emittance Z

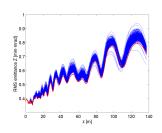


Figure: RMS Emittance Y

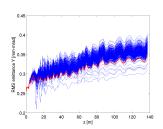
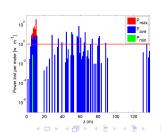



Figure: Losses [W⋅m⁻¹]

(74) Solenoids $\delta_{\scriptscriptstyle X}=\delta_{\scriptscriptstyle Y}=$ 750 $\mu{\rm m}$

Figure: RMS Emittance X



Figure: RMS Emittance Z

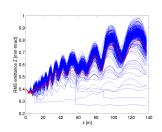


Figure: RMS Emittance Y

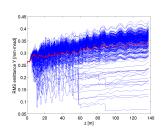
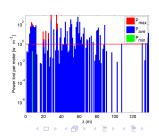



Figure: Losses [W⋅m⁻¹]

(75) Solenoids $\delta_{\rm x}=\delta_{\rm y}=$ 1000 $\mu{\rm m}$

Figure: RMS Emittance X

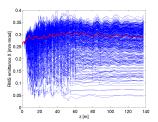


Figure: RMS Emittance Z

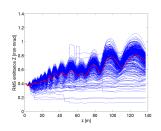


Figure: RMS Emittance Y

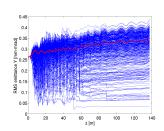
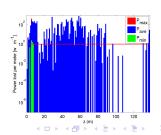



Figure: Losses [W⋅m⁻¹]

(76) Solenoids $\delta_z = 150 \ \mu \text{m}$

Figure: RMS Emittance X

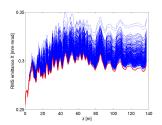


Figure: RMS Emittance Z

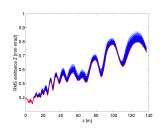


Figure: RMS Emittance Y

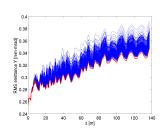
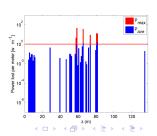



Figure: Losses [W⋅m⁻¹]

(77) Solenoids $\delta_z = 300 \ \mu \text{m}$

Figure: RMS Emittance X

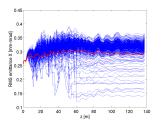


Figure: RMS Emittance Z

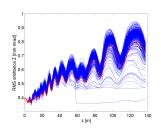


Figure: RMS Emittance Y

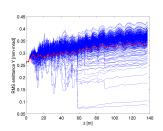
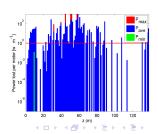



Figure: Losses [W⋅m⁻¹]

(78) Solenoids $\delta_z = 500 \ \mu \text{m}$

Figure: RMS Emittance X

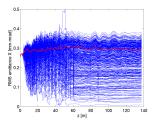


Figure: RMS Emittance Z

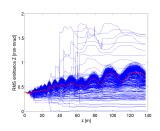


Figure: RMS Emittance Y

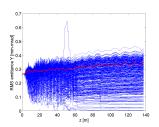
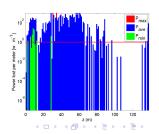



Figure: Losses [W⋅m⁻¹]

(79) Solenoids $\delta_z = 750 \ \mu \text{m}$

Figure: RMS Emittance X

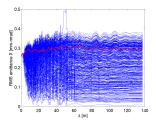


Figure: RMS Emittance Z

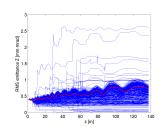


Figure: RMS Emittance Y

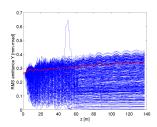
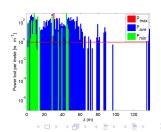



Figure: Losses [W⋅m⁻¹]

(80) Solenoids $\delta_z=1000~\mu\mathrm{m}$

Figure: RMS Emittance X

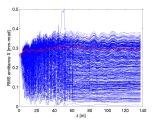


Figure: RMS Emittance Z

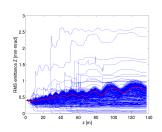


Figure: RMS Emittance Y

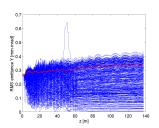
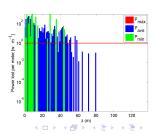



Figure: Losses [W⋅m⁻¹]

(81) Solenoids $\phi_{\mathsf{x}} = \phi_{\mathsf{y}} = 1$ mrad

Figure: RMS Emittance X

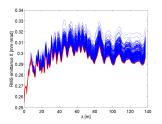


Figure: RMS Emittance Z

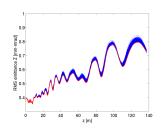


Figure: RMS Emittance Y

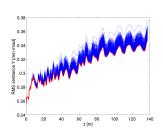
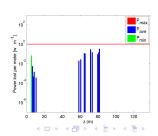



Figure: Losses [W⋅m⁻¹]

(82) Solenoids $\phi_{\rm x}=\phi_{\rm y}=2$ mrad

Figure: RMS Emittance X

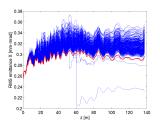


Figure: RMS Emittance Z

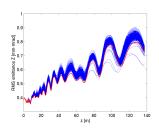


Figure: RMS Emittance Y

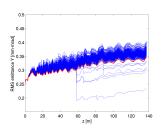
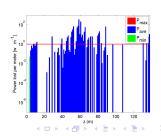



Figure: Losses [W⋅m⁻¹]

(83) Solenoids $\phi_{\rm x}=\phi_{\rm y}=$ 5 mrad

Figure: RMS Emittance X

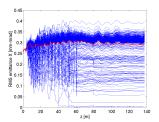


Figure: RMS Emittance Z

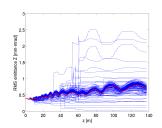


Figure: RMS Emittance Y

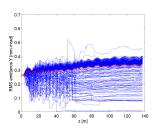
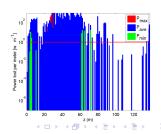



Figure: Losses [W⋅m⁻¹]

(84) Solenoids $\phi_{\rm x}=\phi_{\rm y}=7$ mrad

Figure: RMS Emittance X

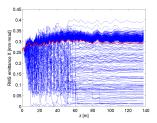


Figure: RMS Emittance Z

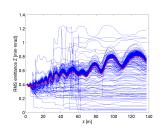


Figure: RMS Emittance Y

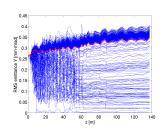
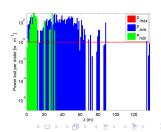



Figure: Losses [W⋅m⁻¹]

(85) Solenoids $\phi_{\scriptscriptstyle X}=\phi_{\scriptscriptstyle Y}=$ 10 mrad

Figure: RMS Emittance X

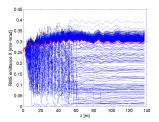


Figure: RMS Emittance Z

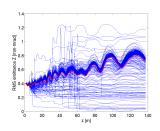


Figure: RMS Emittance Y

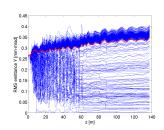
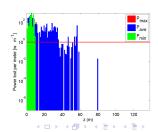



Figure: Losses [W⋅m⁻¹]

(86) Solenoids Field $\delta F_{dynamic} = 0.5 \%$

Figure: RMS Emittance X

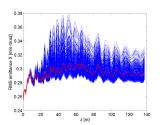


Figure: RMS Emittance Z

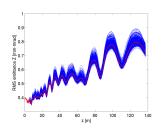


Figure: RMS Emittance Y

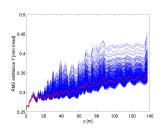


Figure: Losses [W⋅m⁻¹]

(87) Solenoids Field $\delta F_{dynamic} = 1.0 \%$

Figure: RMS Emittance X

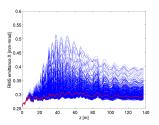


Figure: RMS Emittance z

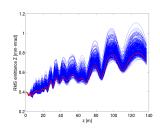


Figure: RMS Emittance Y

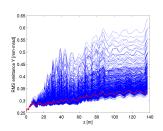
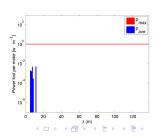



Figure: Losses [W⋅m⁻¹]

(88) Solenoids Field $\delta F_{dynamic} = 1.5 \%$

Figure: RMS Emittance X

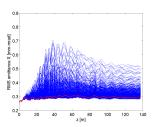


Figure: RMS Emittance Z

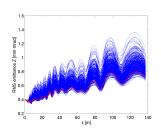


Figure: RMS Emittance Y

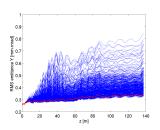
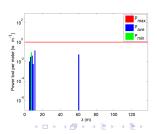



Figure: Losses [W⋅m⁻¹]

(89) Solenoids Field $\delta F_{dynamic} = 2.0 \%$

Figure: RMS Emittance X

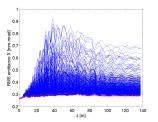


Figure: RMS Emittance Z

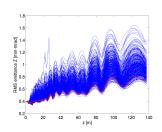


Figure: RMS Emittance Y

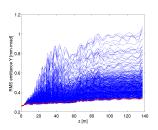
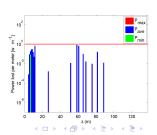



Figure: Losses [W⋅m⁻¹]

(90) Solenoids Field $\delta F_{dynamic} = 2.5 \%$

Figure: RMS Emittance X

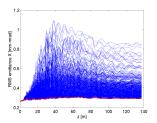


Figure: RMS Emittance Z

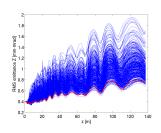


Figure: RMS Emittance Y

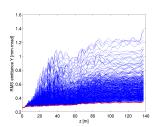
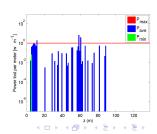



Figure: Losses [W⋅m⁻¹]

(91) Solenoids Field $\delta F_{static} = 0.5 \%$

Figure: RMS Emittance X

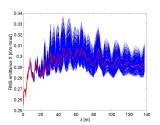


Figure: RMS Emittance Z

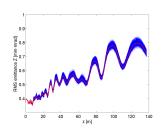
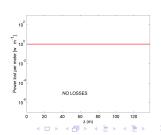



Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(92) Solenoids Field $\delta F_{static} = 1.0 \%$

Figure: RMS Emittance X

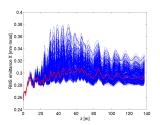


Figure: RMS Emittance Z

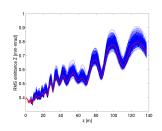


Figure: RMS Emittance Y

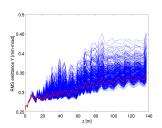


Figure: Losses [W⋅m⁻¹]

(53) Solenoids Field $\delta F_{static} = 1.5 \%$

Figure: RMS Emittance X

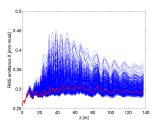


Figure: RMS Emittance Z

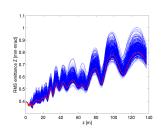


Figure: RMS Emittance Y

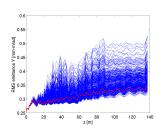
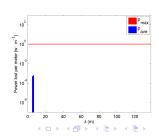



Figure: Losses [W⋅m⁻¹]

(94) Solenoids Field $\delta F_{static} = 2.0 \%$

Figure: RMS Emittance X

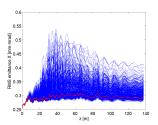


Figure: RMS Emittance Z

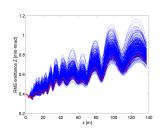


Figure: RMS Emittance Y

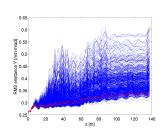
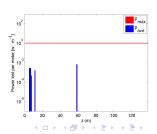



Figure: Losses [W⋅m⁻¹]

(95) Solenoids Field $\delta F_{static} = 2.5 \%$

Figure: RMS Emittance X

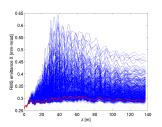


Figure: RMS Emittance Z

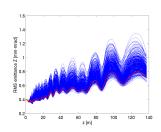


Figure: RMS Emittance Y

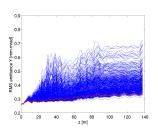
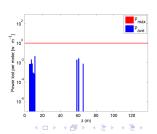



Figure: Losses [W⋅m⁻¹]

(96) Quads $\delta_{\scriptscriptstyle X}=\delta_{\scriptscriptstyle Y}=150~\mu{\rm m}$

Figure: RMS Emittance X

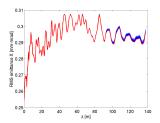


Figure: RMS Emittance Z

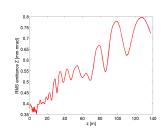


Figure: RMS Emittance Y

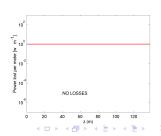



Figure: Losses [W⋅m⁻¹]

(97) Quads
$$\delta_x = \delta_y = 300 \ \mu \text{m}$$

Figure: RMS Emittance X

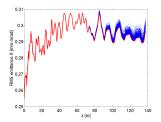


Figure: RMS Emittance Z

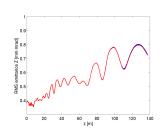


Figure: RMS Emittance Y

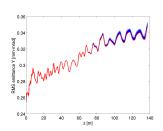
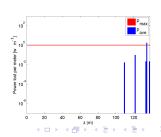



Figure: Losses [W⋅m⁻¹]

(98) Quads
$$\delta_x = \delta_y = 500~\mu \mathrm{m}$$

Figure: RMS Emittance X

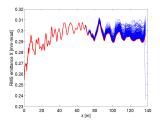


Figure: RMS Emittance Z

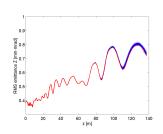


Figure: RMS Emittance Y

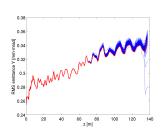
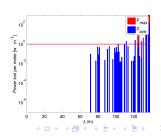



Figure: Losses [W⋅m⁻¹]

(99) Quads
$$\delta_{\rm x}=\delta_{\rm y}=$$
 750 $\mu{\rm m}$

Figure: RMS Emittance X

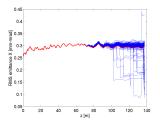


Figure: RMS Emittance Z

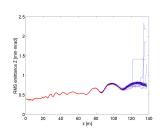


Figure: RMS Emittance Y

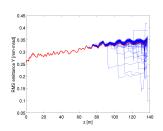
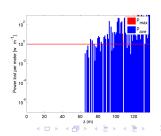



Figure: Losses [W⋅m⁻¹]

(100) Quads
$$\delta_{\it x}=\delta_{\it y}=$$
 1000 $\mu{\rm m}$

Figure: RMS Emittance X

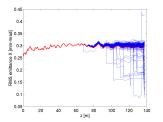


Figure: RMS Emittance Z

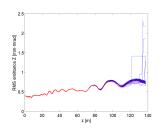


Figure: RMS Emittance Y

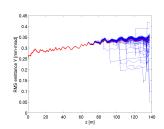
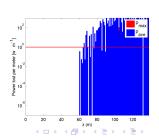



Figure: Losses [W⋅m⁻¹]

(101) Quads $\delta_z = 150 \ \mu \mathrm{m}$

Figure: RMS Emittance X

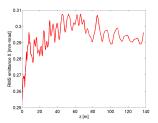


Figure: RMS Emittance Z

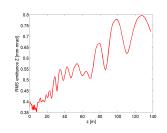


Figure: RMS Emittance Y

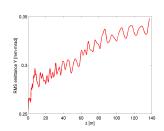


Figure: Losses [W⋅m⁻¹]

(102) Quads $\delta_z = 300 \ \mu \text{m}$

Figure: RMS Emittance X

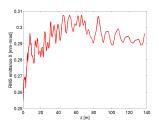


Figure: RMS Emittance Z

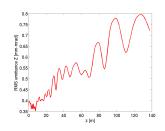


Figure: RMS Emittance Y

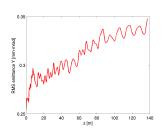


Figure: Losses [W⋅m⁻¹]

(103) Quads $\delta_z = 500 \ \mu \text{m}$

Figure: RMS Emittance X

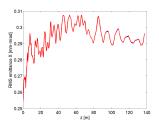


Figure: RMS Emittance Z

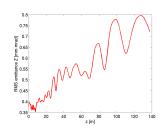


Figure: RMS Emittance Y

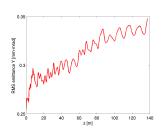


Figure: Losses [W⋅m⁻¹]

(104) Quads $\delta_z = 750 \ \mu \text{m}$

Figure: RMS Emittance X

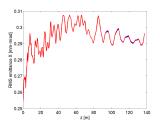


Figure: RMS Emittance Z

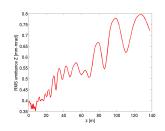


Figure: RMS Emittance Y

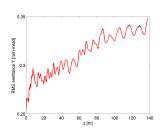
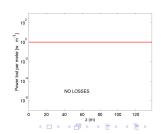



Figure: Losses [W⋅m⁻¹]

(105) Quads $\delta_z = 1000~\mu \mathrm{m}$

Figure: RMS Emittance X

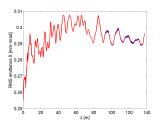


Figure: RMS Emittance Z

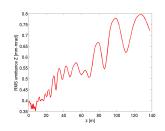


Figure: RMS Emittance Y

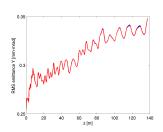


Figure: Losses [W⋅m⁻¹]

(106) Quads $\phi_{\mathsf{x}}=1$ mrad

Figure: RMS Emittance X

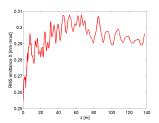


Figure: RMS Emittance Z

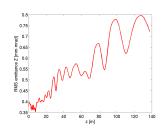


Figure: RMS Emittance Y

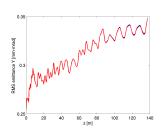


Figure: Losses [W⋅m⁻¹]

(107) Quads $\phi_{\mathsf{x}} = 2 \; \mathsf{mrad}$

Figure: RMS Emittance X

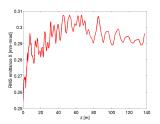


Figure: RMS Emittance z

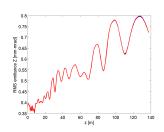


Figure: RMS Emittance Y

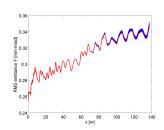
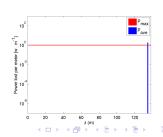



Figure: Losses [W⋅m⁻¹]

(108) Quads $\phi_{\mathsf{x}} = \mathsf{5} \; \mathsf{mrad}$

Figure: RMS Emittance X

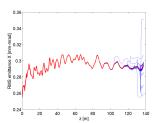


Figure: RMS Emittance Z

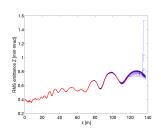


Figure: RMS Emittance Y

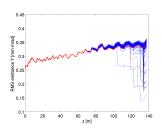
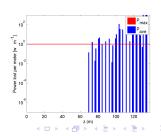



Figure: Losses [W⋅m⁻¹]

(109) Quads $\phi_x = 7$ mrad

Figure: RMS Emittance X

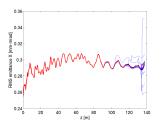


Figure: RMS Emittance Z

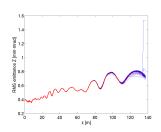


Figure: RMS Emittance Y

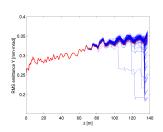
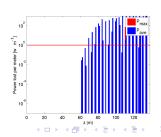



Figure: Losses [W⋅m⁻¹]

(110) Quads $\phi_{\mathsf{x}} = 10 \; \mathsf{mrad}$

Figure: RMS Emittance X

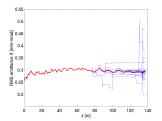


Figure: RMS Emittance Z

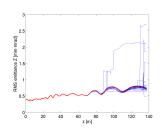


Figure: RMS Emittance Y

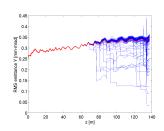
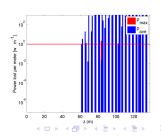



Figure: Losses [W⋅m⁻¹]

(111) Quads $\phi_{\mathsf{x}} = \phi_{\mathsf{y}} = 1$ mrad

Figure: RMS Emittance X

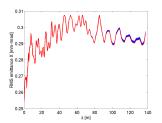


Figure: RMS Emittance Z

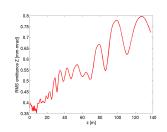


Figure: RMS Emittance Y

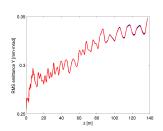
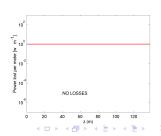



Figure: Losses [W⋅m⁻¹]

(112) Quads $\phi_x = \phi_y = 2$ mrad

Figure: RMS Emittance X

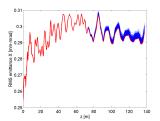


Figure: RMS Emittance Z

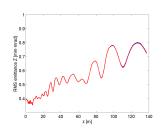


Figure: RMS Emittance Y

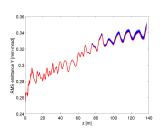
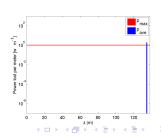



Figure: Losses [W⋅m⁻¹]

(113) Quads $\phi_{\it x}=\phi_{\it y}=5$ mrad

Figure: RMS Emittance X

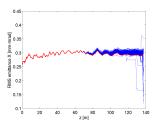


Figure: RMS Emittance Z

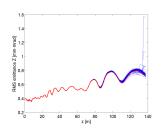


Figure: RMS Emittance Y

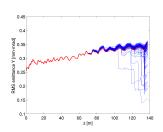
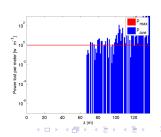



Figure: Losses [W⋅m⁻¹]

(114) Quads $\phi_{\mathsf{X}} = \phi_{\mathsf{y}} = 7 \; \mathsf{mrad}$

Figure: RMS Emittance X

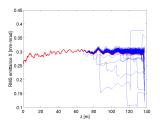


Figure: RMS Emittance Z

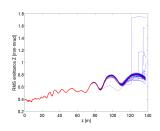


Figure: RMS Emittance Y

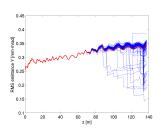
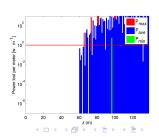



Figure: Losses [W⋅m⁻¹]

(115) Quads $\phi_{\mbox{\tiny X}} = \phi_{\mbox{\tiny Y}} = 10$ mrad

Figure: RMS Emittance X

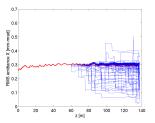


Figure: RMS Emittance Z

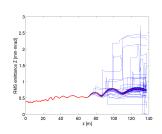


Figure: RMS Emittance Y

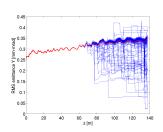
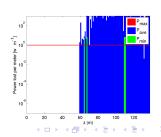



Figure: Losses [W⋅m⁻¹]

(116) Quads Fields $\delta F_{dynamic} = 0.5 \%$

Figure: RMS Emittance X

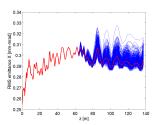


Figure: RMS Emittance Z

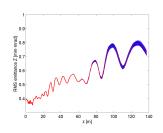


Figure: RMS Emittance Y

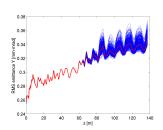
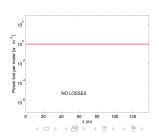



Figure: Losses [W⋅m⁻¹]

(117) Quads Fields $\delta F_{dynamic} = 1.0 \%$

Figure: RMS Emittance X

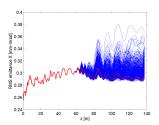


Figure: RMS Emittance Z

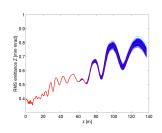


Figure: RMS Emittance Y

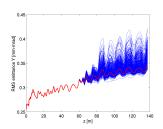


Figure: Losses [W⋅m⁻¹]

(118) Quads Fields $\delta F_{dynamic} = 1.5 \%$

Figure: RMS Emittance X

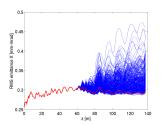


Figure: RMS Emittance Z

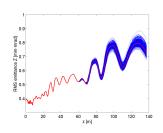


Figure: RMS Emittance Y

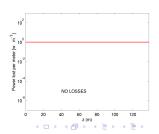



Figure: Losses [W⋅m⁻¹]

(119) Quads Fields $\delta F_{dynamic} = 2.0 \%$

Figure: RMS Emittance X

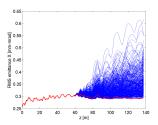


Figure: RMS Emittance Z

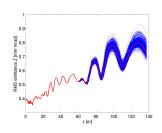


Figure: RMS Emittance Y

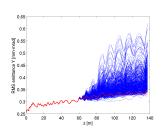
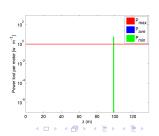



Figure: Losses [W⋅m⁻¹]

(120) Quads Fields $\delta F_{dynamic} = 2.5 \%$

Figure: RMS Emittance X

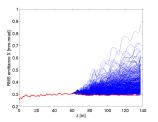


Figure: RMS Emittance Z

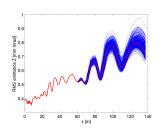


Figure: RMS Emittance Y

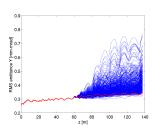
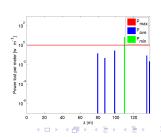



Figure: Losses [W⋅m⁻¹]

(121) Quads Field $\delta F_{static} = 0.5 \%$

Figure: RMS Emittance X

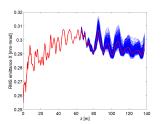


Figure: RMS Emittance Z

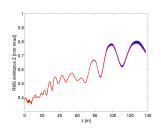


Figure: RMS Emittance Y

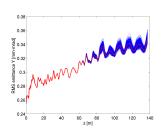
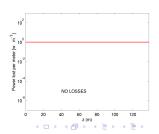



Figure: Losses [W⋅m⁻¹]

(122) Quads Field $\delta F_{static} = 1.0 \%$

Figure: RMS Emittance X

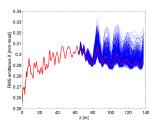


Figure: RMS Emittance Z

Figure: RMS Emittance Y

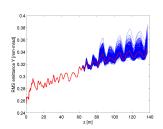


Figure: Losses [W⋅m⁻¹]

(123) Quads Field $\delta F_{static} = 1.5 \%$

Figure: RMS Emittance X

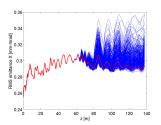


Figure: RMS Emittance Z

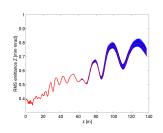


Figure: RMS Emittance Y

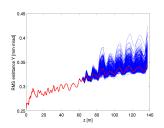


Figure: Losses [W⋅m⁻¹]

(124) Quads Field $\delta F_{static} = 2.0 \%$

Figure: RMS Emittance X

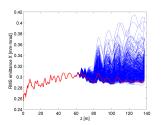


Figure: RMS Emittance Z

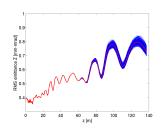


Figure: RMS Emittance Y

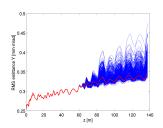


Figure: Losses [W⋅m⁻¹]

(125) Quads Field $\delta F_{static} = 2.5 \%$

Figure: RMS Emittance X

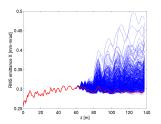


Figure: RMS Emittance Z

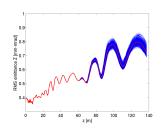


Figure: RMS Emittance Y

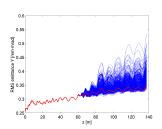


Figure: Losses [W⋅m⁻¹]

(126) Sol.
$$\delta_{xy}=$$
 150 $\mu \mathrm{m}$

Figure: RMS Emittance X

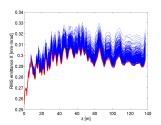


Figure: RMS Emittance Z

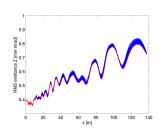


Figure: RMS Emittance Y

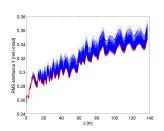
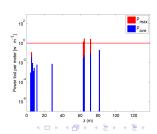



Figure: Losses [W⋅m⁻¹]

(127) Sol.
$$\delta_{xy}=300~\mu\mathrm{m}$$

Figure: RMS Emittance X

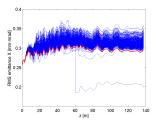


Figure: RMS Emittance Z

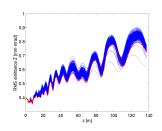


Figure: RMS Emittance Y

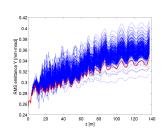
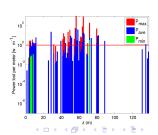



Figure: Losses [W⋅m⁻¹]

(128) Sol.
$$\delta_{xy}=500~\mu\mathrm{m}$$

Figure: RMS Emittance X

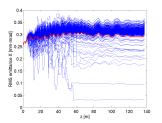


Figure: RMS Emittance Z

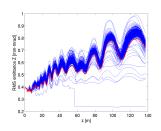


Figure: RMS Emittance Y

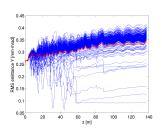
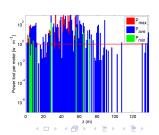



Figure: Losses [W⋅m⁻¹]

(129) Sol.
$$\delta_{xy}=750~\mu\mathrm{m}$$

Figure: RMS Emittance X

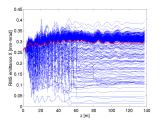


Figure: RMS Emittance Z

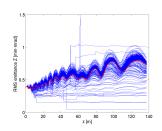


Figure: RMS Emittance Y

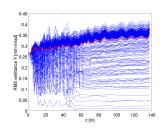
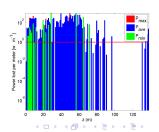



Figure: Losses [W⋅m⁻¹]

(130) Sol.
$$\delta_{xy}=1000~\mu\mathrm{m}$$

Figure: RMS Emittance X

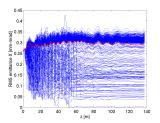


Figure: RMS Emittance Z

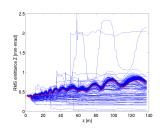


Figure: RMS Emittance Y

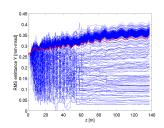
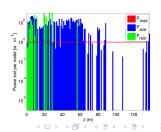



Figure: Losses [W⋅m⁻¹]

(131) Quads $\delta_{xy} = 150 \ \mu \text{m}$

Figure: RMS Emittance X

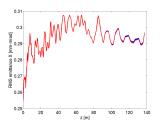


Figure: RMS Emittance Z

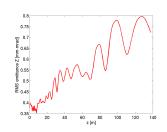


Figure: RMS Emittance Y

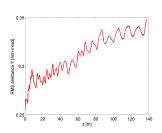


Figure: Losses [W⋅m⁻¹]

(132) Quads. $\delta_{xy}=300~\mu\mathrm{m}$

Figure: RMS Emittance X

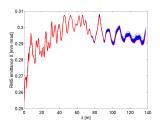


Figure: RMS Emittance Z

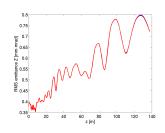


Figure: RMS Emittance Y

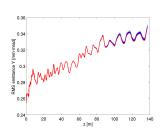
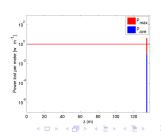



Figure: Losses [W⋅m⁻¹]

(133) Quads. $\delta_{xy} = 500 \ \mu \text{m}$

Figure: RMS Emittance X

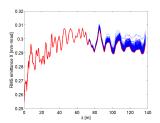


Figure: RMS Emittance Z

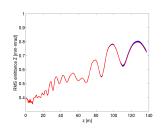


Figure: RMS Emittance Y

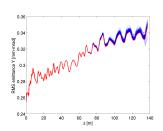
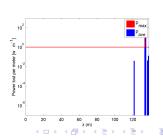



Figure: Losses [W⋅m⁻¹]

(134) Quads. $\delta_{xy}=750~\mu\mathrm{m}$

Figure: RMS Emittance X

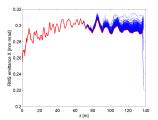


Figure: RMS Emittance Z

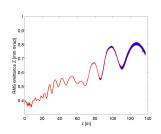


Figure: RMS Emittance Y

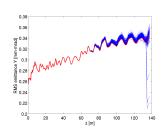
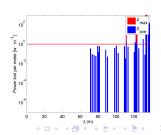



Figure: Losses [W⋅m⁻¹]

(135) Quads. $\delta_{xy}=$ 1000 μ m

Figure: RMS Emittance X

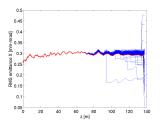


Figure: RMS Emittance Z

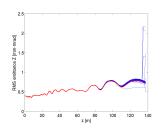


Figure: RMS Emittance Y

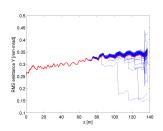
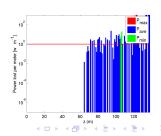



Figure: Losses [W⋅m⁻¹]

(136) Cavity $\delta_{xy} = 150 \ \mu \text{m}$

Figure: RMS Emittance X

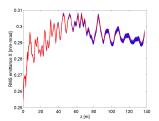


Figure: RMS Emittance Z

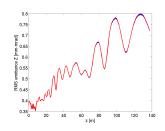


Figure: RMS Emittance Y

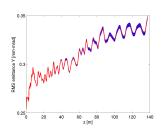


Figure: Losses [W⋅m⁻¹]

(137) Cavity $\delta_{xy} = 300 \ \mu \text{m}$

Figure: RMS Emittance X

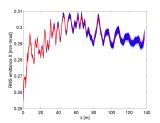


Figure: RMS Emittance Z

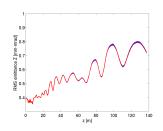


Figure: RMS Emittance Y

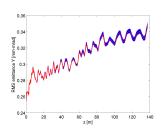
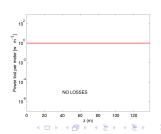



Figure: Losses [W⋅m⁻¹]

(138) Cavity $\delta_{xy} = 500 \ \mu \text{m}$

Figure: RMS Emittance X

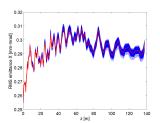


Figure: RMS Emittance Z

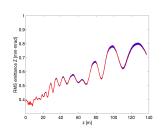


Figure: RMS Emittance Y

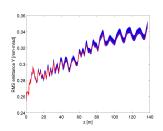
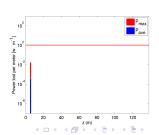



Figure: Losses [W⋅m⁻¹]

(139) Cavity $\delta_{xy} = 750 \ \mu \text{m}$

Figure: RMS Emittance X

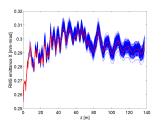


Figure: RMS Emittance Z

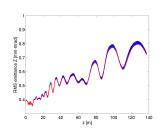


Figure: RMS Emittance Y

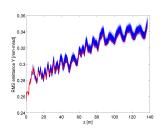
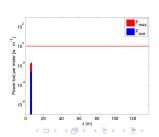



Figure: Losses [W⋅m⁻¹]

(140) Cavity $\delta_{xy}=1000~\mu \mathrm{m}$

Figure: RMS Emittance X

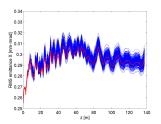


Figure: RMS Emittance Z

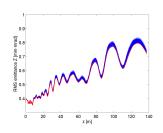


Figure: RMS Emittance Y

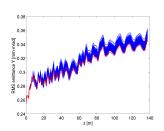
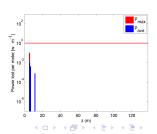



Figure: Losses [W⋅m⁻¹]

(141) Cav. Phase + Cav. Field $\delta\phi_{dyn.}=1^{\circ}$ $\delta F_{dyn.}=1\%$

Figure: RMS Emittance X

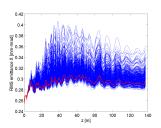


Figure: RMS Emittance Z

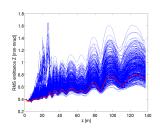


Figure: RMS Emittance Y

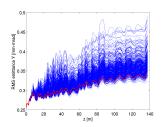
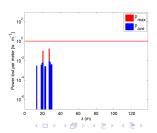



Figure: Losses [W⋅m⁻¹]

(142) 141+ Sol. Field
$$\delta F_{dyn.}=0.5~\%~\delta F_{static}=0.5~\%$$

Figure: RMS Emittance X

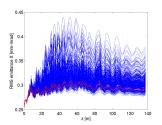


Figure: RMS Emittance Z

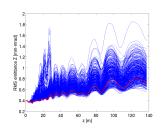


Figure: RMS Emittance Y

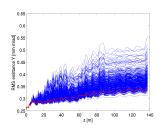
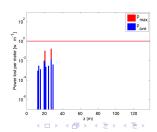



Figure: Losses [W⋅m⁻¹]

(143) 142 + Quads Fields
$$\delta F_{dyn.} = 0.5 \% \ \delta F_{static} = 0.05 \%$$

Figure: RMS Emittance X

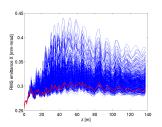


Figure: RMS Emittance Z

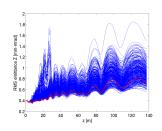


Figure: RMS Emittance Y

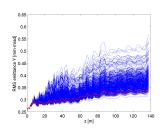
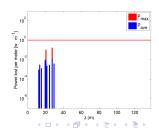



Figure: Losses [W⋅m⁻¹]

(144) 143 + Cav.
$$\delta_{\mathit{xy}} = 500~\mu\mathrm{m}$$

Figure: RMS Emittance X

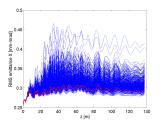


Figure: RMS Emittance Z

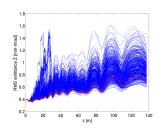


Figure: RMS Emittance Y

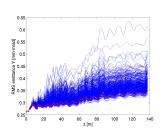
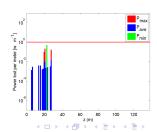



Figure: Losses [W⋅m⁻¹]

(145) 144 + Cav.
$$\phi_z = 2 \text{ mrad}$$

Figure: RMS Emittance X

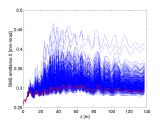


Figure: RMS Emittance Z

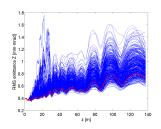


Figure: RMS Emittance Y

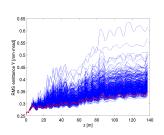
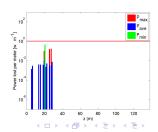



Figure: Losses [W⋅m⁻¹]

(146) 145 + Sol.
$$\delta_{\mathit{xy}} =$$
 150 μ m

Figure: RMS Emittance X

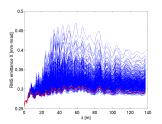


Figure: RMS Emittance Z

Figure: RMS Emittance Y

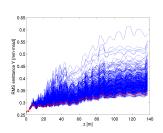
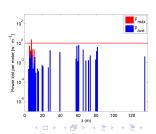



Figure: Losses [W⋅m⁻¹]

(147) 146 + Sol.
$$\delta_{xy} = 300 \ \mu \text{m}$$

Figure: RMS Emittance X

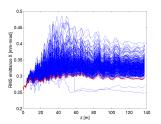


Figure: RMS Emittance Z

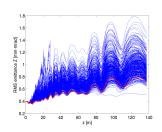


Figure: RMS Emittance Y

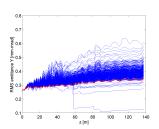


Figure: Losses [W⋅m⁻¹]

(148) 147 + Sol.
$$\delta_{\mathit{xy}} = 500~\mu\mathrm{m}$$

Figure: RMS Emittance X

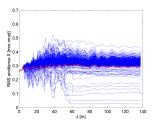


Figure: RMS Emittance Z

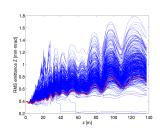


Figure: RMS Emittance Y

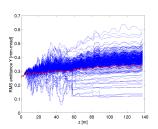
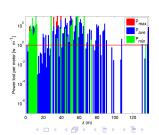



Figure: Losses [W⋅m⁻¹]

(149) 148 + Sol.
$$\delta_{\mathit{xy}} =$$
 750 μ m

Figure: RMS Emittance X

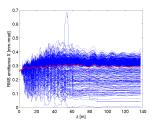


Figure: RMS Emittance Z

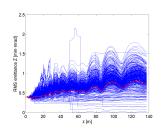


Figure: RMS Emittance Y

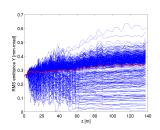
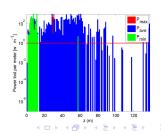



Figure: Losses [W⋅m⁻¹]

(150) 149 + Sol.
$$\delta_{\mathit{xy}} = 1000~\mu\mathrm{m}$$

Figure: RMS Emittance X

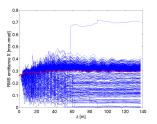


Figure: RMS Emittance Z

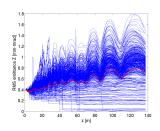


Figure: RMS Emittance Y

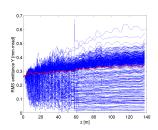
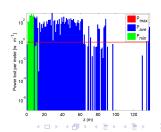



Figure: Losses [W⋅m⁻¹]

